1. Khối 6
  2. Bài tập nâng cao và một số chuyên đề Toán 6 - Tập một
  3. Chuyên đề
  4. Chuyên đề 2: So sánh luỹ thừa
  5. Dạng 2. So sánh các tổng lũy thừa

  • Ví dụ. a) Cho S=1+2+22+23+…+210S=1+2+2^{\tiny 2}+2^{\tiny 3}+\ldots+2^{\tiny 10}S=1+2+22+23+…+210. So sánh SSS và 5⋅295 \cdot 2^{\tiny 9}5⋅29. b) Cho A=1+2 022+2 0222+…+2 02249+2 02250A=1+2~022+2~022^{\tiny 2}+\ldots+2~022^{\tiny 49}+2~022^{\tiny 50}A=1+2 022+2 0222+…+2 02249+2 02250 và B=2 02251−1B=2~022^{\tiny 51}-1B=2 02251−1. So sánh AAA và BBB. c) Cho T=142+162+182+…+1(2⋅n)2T=\dfrac{1}{4^{\tiny 2}}+\dfrac{1}{6^{\tiny 2}}+\dfrac{1}{8^{\tiny 2}}+\ldots+\dfrac{1}{(2 \cdot n)^{\tiny 2}}T=421​+621​+821​+…+(2⋅n)21​ với n∈N∗n \in \mathbb{N}^{\tiny *}n∈N∗. So sánh TTT và 14\dfrac{1}{4}41​.
    Lời giải
    a) S=1+2+22+23+…+210S=1+2+2^{\tiny 2}+2^{\tiny 3}+\ldots+2^{\tiny 10}S=1+2+22+23+…+210. 2S=2+22+23+….+210+211⇒2S−S=211−1<211=4⋅29<5⋅29. 2 S=2+2^{\tiny 2}+2^{\tiny 3}+\ldots .+2^{\tiny 10}+2^{\tiny 11} \Rightarrow 2 S-S=2^{\tiny 11}-1<2^{\tiny 11}=4 \cdot 2^{\tiny 9}<5 \cdot 2^{\tiny 9} . 2S=2+22+23+….+210+211⇒2S−S=211−1<211=4⋅29<5⋅29. Vậy S<5⋅29S<5 \cdot 2^{\tiny 9}S<5⋅29. b) Ta có: A=1+2 022+2 0222+…+2 02249+2 02250A=1+2~022+2~022^{\tiny 2}+\ldots+2~022^{\tiny 49}+2~022^{\tiny 50}A=1+2 022+2 0222+…+2 02249+2 02250 ⇒2 022⋅A=2 022+2 0222+2 0223+…+2 02250+2 02251⇒2 022⋅A−A=2 02251−1⇒2 021⋅A=2 02251−1⇒A=2 02251−12 021<2 02251−1=B.\Rightarrow 2~022 \cdot A=2~022+2~022^{\tiny 2}+2~022^{\tiny 3}+\ldots+2~022^{\tiny 50}+2~022^{\tiny 51} \\ \Rightarrow 2~022 \cdot A-A=2~022^{\tiny 51}-1 \Rightarrow 2~021 \cdot A=2~022^{\tiny 51}-1 \\ \Rightarrow A=\dfrac{2~022^{\tiny 51}-1}{2~021}<2~022^{\tiny 51}-1=B . ⇒2 022⋅A=2 022+2 0222+2 0223+…+2 02250+2 02251⇒2 022⋅A−A=2 02251−1⇒2 021⋅A=2 02251−1⇒A=2 0212 02251−1​<2 02251−1=B. Vậy A<BA<BA<B. c) Ta có: T=142+162+182+…+1(2⋅n)2=1(2⋅2)2+1(2⋅3)2+1(2⋅4)2+…+1(2⋅n)2=14(122+132+142+…+1n2)<14(11⋅2+12⋅3+13⋅4+1(n−1)⋅n)=14(11−12+12−13+13−14+…+1n−1−1n)=14(1−1n)<14. T =\dfrac{1}{4^{\tiny 2}}+\dfrac{1}{6^{\tiny 2}}+\dfrac{1}{8^{\tiny 2}}+\ldots+\dfrac{1}{(2 \cdot n)^{\tiny 2}} \\ =\dfrac{1}{(2 \cdot 2)^{\tiny 2}}+\dfrac{1}{(2 \cdot 3)^{\tiny 2}}+\dfrac{1}{(2 \cdot 4)^{\tiny 2}}+\ldots+\dfrac{1}{(2 \cdot n)^{\tiny 2}} \\ =\dfrac{1}{4}\left(\dfrac{1}{2^{\tiny 2}}+\dfrac{1}{3^{\tiny 2}}+\dfrac{1}{4^{\tiny 2}}+\ldots+\dfrac{1}{n^{\tiny 2}}\right)<\dfrac{1}{4}\left(\dfrac{1}{1 \cdot 2}+\dfrac{1}{2 \cdot 3}+\dfrac{1}{3 \cdot 4}+\dfrac{1}{(n-1) \cdot n}\right) \\ =\dfrac{1}{4}\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\ldots+\dfrac{1}{n-1}-\dfrac{1}{n}\right) \\ =\dfrac{1}{4}\left(1-\dfrac{1}{n}\right)<\dfrac{1}{4} . T=421​+621​+821​+…+(2⋅n)21​=(2⋅2)21​+(2⋅3)21​+(2⋅4)21​+…+(2⋅n)21​=41​(221​+321​+421​+…+n21​)<41​(1⋅21​+2⋅31​+3⋅41​+(n−1)⋅n1​)=41​(11​−21​+21​−31​+31​−41​+…+n−11​−n1​)=41​(1−n1​)<41​. Vậy T<14T<\dfrac{1}{4}T<41​ với n∈N∗n \in \mathbb{N}^{\tiny *}n∈N∗.

    Đáp án
    1/1

hoclieuthongminh.com © 2022

  • Sitemap
  • Home
  • Home